Upper k-Alliances in Graphs

نویسندگان

  • José M. Sigarreta
  • Carlos E. Adame
  • J. M. Sigarreta
چکیده

A nonempty set S ⊆ V is a defensive k-alliance in Γ = (V,E), k ∈ [−Δ,Δ] ∩ Z, if for every v ∈ S, δS(v) ≥ δS̄(v) + k. An defensive kalliance S is called critical if no proper subset of S is an defensive k-alliances in Γ = (V,E). The upper defensive k-alliance number of Γ, denoted by Ak(Γ), is defined as the maximum cardinality of a critical defensive k-alliance in Γ. In this paper we study the mathematical properties of upper defensive k-alliance in graphs. In particular, we obtain several tight bounds on upper defensive k-alliance numbers of a graph. Mathematics Subject Classification: 05C69; 05A20; 05C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Alliances in Graphs

For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...

متن کامل

On global (strong) defensive alliances in some product graphs

A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

On Alliance Partitions and Bisection Width for Planar Graphs

An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show how to construct infinitely many non-trivial examples of graphs that can not be partitioned into alliances and we show that any planar graph with minimum degree at least 4 can be split into two...

متن کامل

Alliances and Bisection Width for Planar Graphs

An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show that any planar graph with minimum degree at least 4 can be split into two alliances in polynomial time. We base this on a proof of an upper bound of n on the bisection width for 4-connected pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011